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Application Note

AG Current Excitation with the Model 370

The following calculation of optimum ac current excitation
facilitates the minimization of self-heating errors. In general, a
user should use as large an excitation as possible to increase
signal, and thus measurement resolution. For ultra-low
temperature resistance measurements, there is an added
constraint that too large an excitation will self-heat the sensor.
The optimum excitation is a balance between minimizing self-
heating errors (low excitation) and maximizing resolution
(large excitation).

The self-heating is a function of the joule heating in the sensor
and the thermal resistance, Rty , between a sensor and its

environment. Ry can be determined empirically and is
strongly temperature dependent: '
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Rewriting in terms of percent change:
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This can be rearranged to solve for current:
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This can be used to determine the optimum current to keep
the self-heating less than a given percent error (AT/T).

To keep the self-heating error less than 1% of temperature,
the excitation current needs to be equal to or less than

the following:
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Ry has been determined for select sensors in previous

application papers."? It can also be determined empirically
by the user.

Table 1 calculates the optimum current for a given
temperature and resistance. The thermal resistance values
are from the results in Reference 2 for the RX-202 sensor.
It shows the optimum current for self-heating to be less than
1% of temperature.

There is one additional factor to consider. All ac resistance
bridges have some level of dc current noise (leakage current),
adding a dc bias current on top of the ac current. If the ac
current is greater than the dc current, this will not be a
noticeable effect. The problem results when the dc current is
significantly greater than the ac current, causing self-heating
in the sensor, especially at low temperatures.

Various Resistance Values (Q)

LN (LS KGO 100,000 200,000 (316,000 (632,000 | 1,000,000 2,000,000 6,320,000
50 4.06 x 10° 3.5nA 2.5 nA 2.0 nA 1.4 nA 1.1 nA 780 pA 440 pA
20 | 635x10° |560pA |400pA |320pA |220pA |180pA |130pA |71pA

15 151 x10° [320pA |220pA  |180pA |130pA |100pA | 7T1pA |40 pA

10 | 508x10° |140pA 99pA |79pA  5.6pA |44pA  |31pA |18pA

5 4.06x 10" |35pA  25pA  20pA |14pA 11pA |78pA |4.4pA

TABLE 1 The optimum excitation current for a given resistance and temperature based on the thermal

resistance for a RX-202 (Reference 2).
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FIGURE 1 Plot of thermal resistance vs. temperature for various temperatures. (from Reference 2)
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exceptionally low dc leakage current of 3 pA. As seen in
Tgt;lle 1, thl? i7l§ allgws mTasErements to below 10 mK RO-600D 101 S0mK to 1 K 1244000 25
without selt-heating due to leakage currents. RO-600 386 S0mKto LK | 167000 27
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values show where the 3716 is likely a better choice than the = mX to =
3716L. CX-1030-CU | X18314 300 mK to 1 K | 387000 -3.9

TABLE 2 4 summary of tested sensors and results to

E.n}\1/1r01}1lmentﬁl noise c;)uplmg nto thf:.lnstrumelpt cireuit— simple power law fit for the thermal resistance results
either through ground loops or capacitive coupling—can (from Reference 2)

also contribute to the self-heating of the sensor. The Model
370 AC Resistance Bridge has a unique, patented, matched
impedance current source that reduces or eliminates
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